Explainable CAD System for Classification of Acute Lymphoblastic Leukemia Based on a Robust White Blood Cell Segmentation

Author:

Diaz Resendiz Jose Luis1ORCID,Ponomaryov Volodymyr1ORCID,Reyes Reyes Rogelio1ORCID,Sadovnychiy Sergiy2ORCID

Affiliation:

1. Instituto Politecnico Nacional, Escuela Superior de Ingenieria Mecanica y Electrica–Culhuacan, Av. Sta. Ana 1000, Mexico City 04440, Mexico

2. Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152, Mexico City 07730, Mexico

Abstract

Leukemia is a significant health challenge, with high incidence and mortality rates. Computer-aided diagnosis (CAD) has emerged as a promising approach. However, deep-learning methods suffer from the “black box problem”, leading to unreliable diagnoses. This research proposes an Explainable AI (XAI) Leukemia classification method that addresses this issue by incorporating a robust White Blood Cell (WBC) nuclei segmentation as a hard attention mechanism. The segmentation of WBC is achieved by combining image processing and U-Net techniques, resulting in improved overall performance. The segmented images are fed into modified ResNet-50 models, where the MLP classifier, activation functions, and training scheme have been tested for leukemia subtype classification. Additionally, we add visual explainability and feature space analysis techniques to offer an interpretable classification. Our segmentation algorithm achieves an Intersection over Union (IoU) of 0.91, in six databases. Furthermore, the deep-learning classifier achieves an accuracy of 99.9% on testing. The Grad CAM methods and clustering space analysis confirm improved network focus when classifying segmented images compared to non-segmented images. Overall, the proposed visual explainable CAD system has the potential to assist physicians in diagnosing leukemia and improving patient outcomes.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference46 articles.

1. Guyton, A.C., and Hall, J.E. (2011). Tratado de Fisiología Médica, Elsevier. [12th ed.]. Chapter 34.

2. Kumar, V., Abul, A., and Jon, C. (2018). Robins Basic Pathology, Elsevier. Chapter 12.

3. Secretaria de Salud de México (2017). Diagnóstico Oportuno de la Leucemia Aguda en Pediatría en Primer y Segundo Nivel de Atención, Technical Report.

4. Do We Know Why We Make Errors in Morphological Diagnosis? An Analysis of Approach and Decision-Making in Haematological Morphology;Brereton;EBioMedicine,2015

5. Loddo, A., and Putzu, L. (2022). On the Reliability of CNNs in Clinical Practice: A Computer-Aided Diagnosis System Case Study. Appl. Sci., 12.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3