On the Reliability of CNNs in Clinical Practice: A Computer-Aided Diagnosis System Case Study

Author:

Loddo AndreaORCID,Putzu LorenzoORCID

Abstract

Leukocytes classification is essential to assess their number and status since they are the body’s first defence against infection and disease. Automation of the process can reduce the laborious manual process of review and diagnosis by operators and has been the subject of study for at least two decades. Most computer-aided systems exploit convolutional neural networks for classification purposes without any intermediate step to produce an accurate classification. This work explores the current limitations of deep learning-based methods applied to medical blood smear data. In particular, we consider leukocyte analysis oriented towards leukaemia prediction as a case study. In particular, we aim to demonstrate that a single classification step can undoubtedly lead to incorrect predictions or, worse, to correct predictions obtained with wrong indicators provided by the images. By generating new synthetic leukocyte data, it is possible to demonstrate that the inclusion of a fine-grained method, such as detection or segmentation, before classification is essential to allow the network to understand the adequate information on individual white blood cells correctly. The effectiveness of this study is thoroughly analysed and quantified through a series of experiments on a public data set of blood smears taken under a microscope. Experimental results show that residual networks perform statistically better in this scenario, even though they make correct predictions with incorrect information.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3