Feasibility of Synthetic Computed Tomography Images Generated from Magnetic Resonance Imaging Scans Using Various Deep Learning Methods in the Planning of Radiation Therapy for Prostate Cancer

Author:

Yoo Gyu Sang,Luu Huan Minh,Kim Heejung,Park Won,Pyo Hongryull,Han Youngyih,Park Ju Young,Park Sung-Hong

Abstract

We aimed to evaluate and compare the qualities of synthetic computed tomography (sCT) generated by various deep-learning methods in volumetric modulated arc therapy (VMAT) planning for prostate cancer. Simulation computed tomography (CT) and T2-weighted simulation magnetic resonance image from 113 patients were used in the sCT generation by three deep-learning approaches: generative adversarial network (GAN), cycle-consistent GAN (CycGAN), and reference-guided CycGAN (RgGAN), a new model which performed further adjustment of sCTs generated by CycGAN with available paired images. VMAT plans on the original simulation CT images were recalculated on the sCTs and the dosimetric differences were evaluated. For soft tissue, a significant difference in the mean Hounsfield unites (HUs) was observed between the original CT images and only sCTs from GAN (p = 0.03). The mean relative dose differences for planning target volumes or organs at risk were within 2% among the sCTs from the three deep-learning approaches. The differences in dosimetric parameters for D98% and D95% from original CT were lowest in sCT from RgGAN. In conclusion, HU conservation for soft tissue was poorest for GAN. There was the trend that sCT generated from the RgGAN showed best performance in dosimetric conservation D98% and D95% than sCTs from other methodologies.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3