CycleSeg: Simultaneous synthetic CT generation and unsupervised segmentation for MR‐only radiotherapy treatment planning of prostate cancer

Author:

Luu Huan Minh1,Yoo Gyu Sang2,Park Won3,Park Sung‐Hong1

Affiliation:

1. Department of Bio and Brain Engineering Korea Advanced Institute of Science and Technology Daejeon Republic of Korea

2. Department of Radiation Oncology Chungbuk National University Hospital Cheongju Republic of Korea

3. Department of Radiation Oncology Samsung Medical Center Seoul Republic of Korea

Abstract

AbstractBackgroundMR‐only radiotherapy treatment planning is an attractive alternative to conventional workflow, reducing scan time and ionizing radiation. It is crucial to derive the electron density map or synthetic CT (sCT) from MR data to perform dose calculations to enable MR‐only treatment planning. Automatic segmentation of relevant organs in MR images can accelerate the process by preventing the time‐consuming manual contouring step. However, the segmentation label is available only for CT data in many cases.PurposeWe propose CycleSeg, a unified framework that generates sCT and corresponding segmentation from MR images without access to MR segmentation labelsMethodsCycleSeg utilizes the CycleGAN formulation to perform unpaired synthesis of sCT and image alignment. To enable MR (sCT) segmentation, CycleSeg incorporates unsupervised domain adaptation by using a pseudo‐labeling approach with feature alignment in semantic segmentation space. In contrast to previous approaches that perform segmentation on MR data, CycleSeg could perform segmentation on both MR and sCT. Experiments were performed with data from prostate cancer patients, with 78/7/10 subjects in the training/validation/test sets, respectively.ResultsCycleSeg showed the best sCT generation results, with the lowest mean absolute error of 102.2 and the lowest Fréchet inception distance of 13.0. CycleSeg also performed best on MR segmentation, with the highest average dice score of 81.0 and 81.1 for MR and sCT segmentation, respectively. Ablation experiments confirmed the contribution of the proposed components of CycleSeg.ConclusionCycleSeg effectively synthesized CT and performed segmentation on MR images of prostate cancer patients. Thus, CycleSeg has the potential to expedite MR‐only radiotherapy treatment planning, reducing the prescribed scans and manual segmentation effort, and increasing throughput.

Funder

National Research Foundation of Korea

Korea Medical Device Development Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3