Affiliation:
1. Department of Bio and Brain Engineering Korea Advanced Institute of Science and Technology Daejeon Republic of Korea
2. Department of Radiation Oncology Chungbuk National University Hospital Cheongju Republic of Korea
3. Department of Radiation Oncology Samsung Medical Center Seoul Republic of Korea
Abstract
AbstractBackgroundMR‐only radiotherapy treatment planning is an attractive alternative to conventional workflow, reducing scan time and ionizing radiation. It is crucial to derive the electron density map or synthetic CT (sCT) from MR data to perform dose calculations to enable MR‐only treatment planning. Automatic segmentation of relevant organs in MR images can accelerate the process by preventing the time‐consuming manual contouring step. However, the segmentation label is available only for CT data in many cases.PurposeWe propose CycleSeg, a unified framework that generates sCT and corresponding segmentation from MR images without access to MR segmentation labelsMethodsCycleSeg utilizes the CycleGAN formulation to perform unpaired synthesis of sCT and image alignment. To enable MR (sCT) segmentation, CycleSeg incorporates unsupervised domain adaptation by using a pseudo‐labeling approach with feature alignment in semantic segmentation space. In contrast to previous approaches that perform segmentation on MR data, CycleSeg could perform segmentation on both MR and sCT. Experiments were performed with data from prostate cancer patients, with 78/7/10 subjects in the training/validation/test sets, respectively.ResultsCycleSeg showed the best sCT generation results, with the lowest mean absolute error of 102.2 and the lowest Fréchet inception distance of 13.0. CycleSeg also performed best on MR segmentation, with the highest average dice score of 81.0 and 81.1 for MR and sCT segmentation, respectively. Ablation experiments confirmed the contribution of the proposed components of CycleSeg.ConclusionCycleSeg effectively synthesized CT and performed segmentation on MR images of prostate cancer patients. Thus, CycleSeg has the potential to expedite MR‐only radiotherapy treatment planning, reducing the prescribed scans and manual segmentation effort, and increasing throughput.
Funder
National Research Foundation of Korea
Korea Medical Device Development Fund