Radiophysiomics: Brain Tumors Classification by Machine Learning and Physiological MRI Data

Author:

Stadlbauer AndreasORCID,Marhold FranzORCID,Oberndorfer Stefan,Heinz Gertraud,Buchfelder Michael,Kinfe Thomas M.ORCID,Meyer-Bäse Anke

Abstract

The precise initial characterization of contrast-enhancing brain tumors has significant consequences for clinical outcomes. Various novel neuroimaging methods have been developed to increase the specificity of conventional magnetic resonance imaging (cMRI) but also the increased complexity of data analysis. Artificial intelligence offers new options to manage this challenge in clinical settings. Here, we investigated whether multiclass machine learning (ML) algorithms applied to a high-dimensional panel of radiomic features from advanced MRI (advMRI) and physiological MRI (phyMRI; thus, radiophysiomics) could reliably classify contrast-enhancing brain tumors. The recently developed phyMRI technique enables the quantitative assessment of microvascular architecture, neovascularization, oxygen metabolism, and tissue hypoxia. A training cohort of 167 patients suffering from one of the five most common brain tumor entities (glioblastoma, anaplastic glioma, meningioma, primary CNS lymphoma, or brain metastasis), combined with nine common ML algorithms, was used to develop overall 135 classifiers. Multiclass classification performance was investigated using tenfold cross-validation and an independent test cohort. Adaptive boosting and random forest in combination with advMRI and phyMRI data were superior to human reading in accuracy (0.875 vs. 0.850), precision (0.862 vs. 0.798), F-score (0.774 vs. 0.740), AUROC (0.886 vs. 0.813), and classification error (5 vs. 6). The radiologists, however, showed a higher sensitivity (0.767 vs. 0.750) and specificity (0.925 vs. 0.902). We demonstrated that ML-based radiophysiomics could be helpful in the clinical routine diagnosis of contrast-enhancing brain tumors; however, a high expenditure of time and work for data preprocessing requires the inclusion of deep neural networks.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3