Prediction of a Multi-Gene Assay (Oncotype DX and Mammaprint) Recurrence Risk Group Using Machine Learning in Estrogen Receptor-Positive, HER2-Negative Breast Cancer—The BRAIN Study

Author:

Ji Jung-Hwan1ORCID,Ahn Sung Gwe2ORCID,Yoo Youngbum3,Park Shin-Young4,Kim Joo-Heung5ORCID,Jeong Ji-Yeong6,Park Seho7ORCID,Lee Ilkyun1

Affiliation:

1. Department of Surgery, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711, Republic of Korea

2. Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea

3. Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea

4. Department of Surgery, Inha University Hospital, College of Medicine, Incheon 22332, Republic of Korea

5. Department of Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea

6. Department of AI Research, Neurodigm, Seoul 04790, Republic of Korea

7. Division of Breast Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

Abstract

This study aimed to develop a machine learning-based prediction model for predicting multi-gene assay (MGA) risk categories. Patients with estrogen receptor-positive (ER+)/HER2− breast cancer who had undergone Oncotype DX (ODX) or MammaPrint (MMP) were used to develop the prediction model. The development cohort consisted of a total of 2565 patients including 2039 patients tested with ODX and 526 patients tested with MMP. The MMP risk prediction model utilized a single XGBoost model, and the ODX risk prediction model utilized combined LightGBM, CatBoost, and XGBoost models through soft voting. Additionally, the ensemble (MMP + ODX) model combining MMP and ODX utilized CatBoost and XGBoost through soft voting. Ten random samples, corresponding to 10% of the modeling dataset, were extracted, and cross-validation was performed to evaluate the accuracy on each validation set. The accuracy of our predictive models was 84.8% for MMP, 87.9% for ODX, and 86.8% for the ensemble model. In the ensemble cohort, the sensitivity, specificity, and precision for predicting the low-risk category were 0.91, 0.66, and 0.92, respectively. The prediction accuracy exceeded 90% in several subgroups, with the highest prediction accuracy of 95.7% in the subgroup that met Ki-67 <20 and HG 1~2 and premenopausal status. Our machine learning-based predictive model has the potential to complement existing MGAs in ER+/HER2− breast cancer.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3