Breast Cancer Molecular Subtype Prediction: A Mammography-Based AI Approach

Author:

Mota Ana M.1ORCID,Mendes João12ORCID,Matela Nuno1ORCID

Affiliation:

1. Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal

2. LASIGE, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal

Abstract

Breast cancer remains a leading cause of mortality among women, with molecular subtypes significantly influencing prognosis and treatment strategies. Currently, identifying the molecular subtype of cancer requires a biopsy—a specialized, expensive, and time-consuming procedure, often yielding to results that must be supported with additional biopsies due to technique errors or tumor heterogeneity. This study introduces a novel approach for predicting breast cancer molecular subtypes using mammography images and advanced artificial intelligence (AI) methodologies. Using the OPTIMAM imaging database, 1397 images from 660 patients were selected. The pretrained deep learning model ResNet-101 was employed to classify tumors into five subtypes: Luminal A, Luminal B1, Luminal B2, HER2, and Triple Negative. Various classification strategies were studied: binary classifications (one vs. all others, specific combinations) and multi-class classification (evaluating all subtypes simultaneously). To address imbalanced data, strategies like oversampling, undersampling, and data augmentation were explored. Performance was evaluated using accuracy and area under the receiver operating characteristic curve (AUC). Binary classification results showed a maximum average accuracy and AUC of 79.02% and 64.69%, respectively, while multi-class classification achieved an average AUC of 60.62% with oversampling and data augmentation. The most notable binary classification was HER2 vs. non-HER2, with an accuracy of 89.79% and an AUC of 73.31%. Binary classification for specific combinations of subtypes revealed an accuracy of 76.42% for HER2 vs. Luminal A and an AUC of 73.04% for HER2 vs. Luminal B1. These findings highlight the potential of mammography-based AI for non-invasive breast cancer subtype prediction, offering a promising alternative to biopsies and paving the way for personalized treatment plans.

Funder

Fundação para a Ciência e Tecnologia—Portugal

Bolsa de Investigação para Doutoramento FCT

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3