Chick Chorioallantoic Membrane (CAM) Assays as a Model of Patient-Derived Xenografts from Circulating Cancer Stem Cells (cCSCs) in Breast Cancer Patients

Author:

Pizon MonikaORCID,Schott Dorothea,Pachmann Ulrich,Schobert RainerORCID,Pizon Marek,Wozniak MartaORCID,Bobinski Rafal,Pachmann Katharina

Abstract

Background: cCSCs are a small subset of circulating tumor cells with cancer stem cell features: resistance to cancer treatments and the capacity for generating metastases. PDX are an appreciated tool in oncology, providing biologically meaningful models of many cancer types, and potential platforms for the development of precision oncology approaches. Commonly, mouse models are used for the in vivo assessment of potential new therapeutic targets in cancers. However, animal models are costly and time consuming. An attractive alternative to such animal experiments is the chicken chorioallantoic membrane assay. Methods: In this study, primary cultures from cCSCs were established using the sphere-forming assay. Subsequently, tumorspheres were transplanted onto the CAM membrane of fertilized chicken eggs to form secondary microtumors. Results: We have developed an innovative in vitro platform for cultivation of cCSCs from peripheral blood of cancer patients. The number of tumorspheres increased significantly with tumor progression and aggressiveness of primary tumor. The number of tumorspheres was positively correlated with Ki-67, Her2 status, and grade score in primary breast tumors. The grafting of tumorspheres onto the CAM was successful and positively correlated with aggressiveness and proliferation capacity of the primary tumor. These tumors pathologically closely resembled the primary tumor. Conclusions: The number of tumorspheres cultured from peripheral blood and the success rate of establishing PDX directly reflect the aggressiveness and proliferation capacity of the primary tumor. A CAM-based PDX model using cCSC provides a fast, low-cost, easy to handle, and powerful preclinical platform for drug screening, therapy optimization, and biomarker discovery.

Funder

Pfizer

Astellas Pharma

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3