Abstract
Breast cancer (BC) is characterized by high disease heterogeneity and represents the most frequently diagnosed cancer among women worldwide. Complex and subtype-specific gene expression alterations participate in disease development and progression, with BC cells known to rewire their cellular metabolism to survive, proliferate, and invade. Hence, as an emerging cancer hallmark, metabolic reprogramming holds great promise for cancer diagnosis, prognosis, and treatment. Multi-omics approaches (the combined analysis of various types of omics data) offer opportunities to advance our understanding of the molecular changes underlying metabolic rewiring in complex diseases such as BC. Recent studies focusing on the combined analysis of genomics, epigenomics, transcriptomics, proteomics, and/or metabolomics in different BC subtypes have provided novel insights into the specificities of metabolic rewiring and the vulnerabilities that may guide therapeutic development and improve patient outcomes. This review summarizes the findings of multi-omics studies focused on the characterization of the specific metabolic phenotypes of BC and discusses how they may improve clinical BC diagnosis, subtyping, and treatment.
Funder
Ministerio de Ciencia e Innovación
European Regional Development Fund
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献