Aldo-Keto Reductase 1C3 Mediates Chemotherapy Resistance in Esophageal Adenocarcinoma via ROS Detoxification

Author:

Zhou ChenghuiORCID,Wang ZhefangORCID,Li Jiahui,Wu Xiaolin,Fan NingboORCID,Li Dai,Liu Fanyu,Plum Patrick S.ORCID,Hoppe Sascha,Hillmer Axel M.,Quaas Alexandar,Gebauer FlorianORCID,Chon Seung-HunORCID,Bruns Christiane J.,Zhao YueORCID

Abstract

Esophageal adenocarcinoma (EAC) is one of the most lethal malignancies, and limits promising treatments. AKR1C3 represents a therapeutic target to combat the resistance in many cancers. However, the molecular mechanism of AKR1C3 in the chemotherapy resistance of EAC is still unclear. We found that the mRNA level of AKR1C3 was higher in EAC tumor tissues, and that high AKR1C3 expression might be associated with poor overall survival of EAC patients. AKR1C3 overexpression decreased cell death induced by chemotherapeutics, while knockdown of AKR1C3 attenuated the effect. Furthermore, we found AKR1C3 was inversely correlated with ROS production. Antioxidant NAC rescued chemotherapy-induced apoptosis in AKR1C3 knockdown cells, while the GSH biosynthesis inhibitor BSO reversed a protective effect of AKR1C3 against chemotherapy. AKT phosphorylation was regulated by AKR1C3 and might be responsible for eliminating over-produced ROS in EAC cells. Intracellular GSH levels were modulated by AKR1C3 and the inhibition of AKT could reduce GSH level in EAC cells. Here, we reported for the first time that AKR1C3 renders chemotherapy resistance through controlling ROS levels via AKT signaling in EAC cells. Targeting AKR1C3 may represent a novel strategy to sensitize EAC cells to conventional chemotherapy.

Funder

Deutsche Forschungsgemeinschaft

Köln Fortune Program/Faculty of Medicine, University of Cologne

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3