Evaluation of Cd-induced cytotoxicity in primary human keratinocytes

Author:

Romashin Daniil1ORCID,Arzumanian Viktoriia1,Poverennaya Ekaterina1,Varshaver Alexandra1,Luzgina Nataliya1,Rusanov Alexander1ORCID

Affiliation:

1. Institute of Biomedical Chemistry, Moscow, Russia

Abstract

An increasing number of studies have investigated the effects of Cd on human health. Cd-induced dermatotoxicity is an important field of research, but numerous studies have focused on the effects of Cd on the human skin. Moreover, most studies have been performed using HaCaT cells but not primary keratinocytes. In this study, we provide the results describing the cytotoxic effects of Cd exposure on primary human epidermal keratinocytes obtained from different donors. The subtoxic concentration of cadmium chloride was determined via MTT assay, and transcriptomic analysis of the cells exposed to this concentration (25 µM) was performed. As in HaCaT cells, Cd exposure resulted in increased ROS levels, cell cycle arrest, and induction of apoptosis. In addition, we report that exposure to Cd affects zinc and copper homeostasis, induces metallothionein expression, and activates various signaling pathways, including Nrf2, NF-kB, TRAIL, and PI3K. Cd induces the secretion of various cytokines (IL-1, IL-6, IL-10, and PGE2) and upregulates the expression of several cytokeratins, such as KRT6B, KRT6C, KRT16, and KRT17. The results provide a better understanding of the mechanisms of cadmium-induced cytotoxicity and its effect on human epidermal skin cells.

Funder

The work was performed within the framework of the Program for Basic Research in the Russian Federation for a long-term period

Publisher

SAGE Publications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Keratins 6, 16, and 17 in Health and Disease: A Summary of Recent Findings;Current Issues in Molecular Biology;2024-08-06

2. Loss of mutant p53 in HaCaT keratinocytes promotes cadmium-induced keratin 17 expression and cell death;Biochemical and Biophysical Research Communications;2024-05

3. Systems Biology for Drug Target Discovery in Acute Myeloid Leukemia;International Journal of Molecular Sciences;2024-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3