Abstract
Segmentation of brain tumor images, to refine the detection and understanding of abnormal masses in the brain, is an important research topic in medical imaging. This paper proposes a new segmentation method, consisting of three main steps, to detect brain lesions using magnetic resonance imaging (MRI). In the first step, the parts of the image delineating the skull bone are removed, to exclude insignificant data. In the second step, which is the main contribution of this study, the particle swarm optimization (PSO) technique is applied, to detect the block that contains the brain lesions. The fitness function, used to determine the best block among all candidate blocks, is based on a two-way fixed-effects analysis of variance (ANOVA). In the last step of the algorithm, the K-means segmentation method is used in the lesion block, to classify it as a tumor or not. A thorough evaluation of the proposed algorithm was performed, using: (1) a private MRI database provided by the Kouba imaging center—Algiers (KICA); (2) the multimodal brain tumor segmentation challenge (BraTS) 2015 database. Estimates of the selected fitness function were first compared to those based on the sum-of-absolute-differences (SAD) dissimilarity criterion, to demonstrate the efficiency and robustness of the ANOVA. The performance of the optimized brain tumor segmentation algorithm was then compared to the results of several state-of-the-art techniques. The results obtained, by using the Dice coefficient, Jaccard distance, correlation coefficient, and root mean square error (RMSE) measurements, demonstrated the superiority of the proposed optimized segmentation algorithm over equivalent techniques.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献