A Review of Document Binarization: Main Techniques, New Challenges, and Trends

Author:

Yang Zhengxian1,Zuo Shikai1,Zhou Yanxi1,He Jinlong1,Shi Jianwen1

Affiliation:

1. School of Opto-Electronic and Communication Engineering, Department of Microelectronics, Xiamen University of Technology, Xiamen 361024, China

Abstract

Document image binarization is a challenging task, especially when it comes to text segmentation in degraded document images. The binarization, as a pre-processing step of Optical Character Recognition (OCR), is one of the most fundamental and commonly used segmentation methods. It separates the foreground text from the background of the document image to facilitate subsequent image processing. In view of the different degradation degrees of document images, researchers have proposed a variety of solutions. In this paper, we have summarized some challenges and difficulties in the field of document image binarization. Approximately 60 methods documenting image binarization techniques are mentioned, including traditional algorithms and deep learning-based algorithms. Here, we evaluated the performance of 25 image binarization techniques on the H-DIBCO2016 dataset to provide some help for future research.

Funder

Natural Science Foundation of Fujian Province of China

Educational Teaching Reform Research Project of Xiamen University of Technology in 2022

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3