Implementation of the Chick Chorioallantoic Membrane (CAM) Model in Radiation Biology and Experimental Radiation Oncology Research

Author:

Dünker ,Jendrossek

Abstract

Radiotherapy (RT) is part of standard cancer treatment. Innovations in treatment planning and increased precision in dose delivery have significantly improved the therapeutic gain of radiotherapy but are reaching their limits due to biologic constraints. Thus, a better understanding of the complex local and systemic responses to RT and of the biological mechanisms causing treatment success or failure is required if we aim to define novel targets for biological therapy optimization. Moreover, optimal treatment schedules and prognostic biomarkers have to be defined for assigning patients to the best treatment option. The complexity of the tumor environment and of the radiation response requires extensive in vivo experiments for the validation of such treatments. So far in vivo investigations have mostly been performed in time- and cost-intensive murine models. Here we propose the implementation of the chick chorioallantoic membrane (CAM) model as a fast, cost-efficient model for semi high-throughput preclinical in vivo screening of the modulation of the radiation effects by molecularly targeted drugs. This review provides a comprehensive overview on the application spectrum, advantages and limitations of the CAM assay and summarizes current knowledge of its applicability for cancer research with special focus on research in radiation biology and experimental radiation oncology.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3