Causal Factor Disentanglement for Few-Shot Domain Adaptation in Video Prediction

Author:

Cornille Nathan1ORCID,Laenen Katrien1ORCID,Sun Jingyuan1,Moens Marie-Francine1

Affiliation:

1. Language Intelligence and Information Retrieval (LIIR) Lab, Department of Computer Science KU Leuven, 3001 Leuven, Belgium

Abstract

An important challenge in machine learning is performing with accuracy when few training samples are available from the target distribution. If a large number of training samples from a related distribution are available, transfer learning can be used to improve the performance. This paper investigates how to do transfer learning more effectively if the source and target distributions are related through a Sparse Mechanism Shift for the application of next-frame prediction. We create Sparse Mechanism Shift-TempoRal Intervened Sequences (SMS-TRIS), a benchmark to evaluate transfer learning for next-frame prediction derived from the TRIS datasets. We then propose to exploit the Sparse Mechanism Shift property of the distribution shift by disentangling the model parameters with regard to the true causal mechanisms underlying the data. We use the Causal Identifiability from TempoRal Intervened Sequences (CITRIS) model to achieve this disentanglement via causal representation learning. We show that encouraging disentanglement with the CITRIS extensions can improve performance, but their effectiveness varies depending on the dataset and backbone used. We find that it is effective only when encouraging disentanglement actually succeeds in increasing disentanglement. We also show that an alternative method designed for domain adaptation does not help, indicating the challenging nature of the SMS-TRIS benchmark.

Funder

European Research Council

Research Foundation—Flanders

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference36 articles.

1. Filos, A., Tigkas, P., McAllister, R., Rhinehart, N., Levine, S., and Gal, Y. (2020, January 13–18). Can autonomous vehicles identify, recover from, and adapt to distribution shifts?. Proceedings of the International Conference on Machine Learning, PMLR, Virtual.

2. Guariso, G., Nunnari, G., and Sangiorgio, M. (2020). Multi-step solar irradiance forecasting and domain adaptation of deep neural networks. Energies, 13.

3. Deep Episodic Memory: Encoding, Recalling, and Predicting Episodic Experiences for Robot Action Execution;Rothfuss;IEEE Robot. Autom. Lett.,2018

4. Teshima, T., Sato, I., and Sugiyama, M. (2020, January 13–18). Few-shot Domain Adaptation by Causal Mechanism Transfer. Proceedings of the 37th International Conference on Machine Learning, PMLR, Virtual.

5. Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D. (2019). Invariant Risk Minimization. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3