Abstract
The problem of forecasting hourly solar irradiance over a multi-step horizon is dealt with by using three kinds of predictor structures. Two approaches are introduced: Multi-Model (MM) and Multi-Output (MO). Model parameters are identified for two kinds of neural networks, namely the traditional feed-forward (FF) and a class of recurrent networks, those with long short-term memory (LSTM) hidden neurons, which is relatively new for solar radiation forecasting. The performances of the considered approaches are rigorously assessed by appropriate indices and compared with standard benchmarks: the clear sky irradiance and two persistent predictors. Experimental results on a relatively long time series of global solar irradiance show that all the networks architectures perform in a similar way, guaranteeing a slower decrease of forecasting ability on horizons up to several hours, in comparison to the benchmark predictors. The domain adaptation of the neural predictors is investigated evaluating their accuracy on other irradiance time series, with different geographical conditions. The performances of FF and LSTM models are still good and similar between them, suggesting the possibility of adopting a unique predictor at the regional level. Some conceptual and computational differences between the network architectures are also discussed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献