Topological Dimensions from Disorder and Quantum Mechanics?

Author:

Horváth Ivan12ORCID,Markoš Peter3

Affiliation:

1. Nuclear Physics Institute CAS, 25068 Řež near Prague, Czech Republic

2. Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA

3. Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina 2, 842 28 Bratislava, Slovakia

Abstract

We have recently shown that the critical Anderson electron in D=3 dimensions effectively occupies a spatial region of the infrared (IR) scaling dimension dIR≈8/3. Here, we inquire about the dimensional substructure involved. We partition space into regions of equal quantum occurrence probabilities, such that the points comprising a region are of similar relevance, and calculate the IR scaling dimension d of each. This allows us to infer the probability density p(d) for dimension d to be accessed by the electron. We find that p(d) has a strong peak at d very close to two. In fact, our data suggest that p(d) is non-zero on the interval [dmin,dmax]≈[4/3,8/3] and may develop a discrete part (δ-function) at d=2 in the infinite-volume limit. The latter invokes the possibility that a combination of quantum mechanics and pure disorder can lead to the emergence of integer (topological) dimensions. Although dIR is based on effective counting, of which p(d) has no a priori knowledge, dIR≥dmax is an exact feature of the ensuing formalism. A possible connection of our results to the recent findings of dIR≈2 in Dirac near-zero modes of thermal quantum chromodynamics is emphasized.

Funder

Slovak Grant Agency VEGA

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exact minimal effective amounts of three 1D continuous functions and their use in Anderson transitions;Journal of Physics A: Mathematical and Theoretical;2024-06-17

2. Localized modes in the IR phase of QCD;Physical Review D;2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3