Exact minimal effective amounts of three 1D continuous functions and their use in Anderson transitions

Author:

Gong LongyanORCID

Abstract

Abstract A conceptual quantity—the minimal effective amount of a quantum state ϕ ( r j ) in d-dimensional systems, defined by N = j = 1 N min { N | ϕ ( r j ) | 2 , 1 } , is newly proposed, where system sizes N = L d . The effective dimension d IR can be calculated by N = h ( L ) L d I R , where h ( L ) does not change faster than any nonzero power. However, the nature of h ( L ) is unknown priori in any given model, but is at the same time very important for its numerical analysis. Hence, analytical results can provide insights on h ( L ) in more complex situations. In this paper, we get exact results of 1D continuous sine functions, exponential decay functions and power-law decay functions. They are used to distinguish extended and localized phases in the 1D uniform potential model, Anderson model and HMP (hopping rates modulated by a power-law function) model.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference36 articles.

1. Absence of diffusion in certain random lattices;Anderson;Phys. Rev.,1958

2. Anderson transitions;Evers;Rev. Mod. Phys.,2008

3. Disordered electronic systems;Lee;Rev. Mod. Phys.,1985

4. Fifty years of Anderson localization;Lagendijk;Phys. Today,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3