Abstract
Forest composition in the eastern United States (US) has been shifting from an oak–hickory to maple–beech assemblage, but whether there are species-specific differences within these oak–hickory stands in their responses and recovery from drought remains unclear. Here, we examined drought responses and resilience derived from radial growth of 485 co-occurring Carya ovata and Quercus alba individual trees at 15 forests in the eastern US. Water availability over the growing season (May to August) of the current year controls growth variability of both C. ovata and Q. alba. Drought that occurred in June caused the greatest growth reduction for both species while interspecific differences inof drought-induced growth reduction was found in July, where Q. alba experienced stronger reduction than C. ovata. Both species are resilient to early growing season drought, but late growing season drought caused larger drought legacy effects for Q. alba. The increasing drought frequency and intensity will have a more prominent impact in oak–hickory stands in the eastern US. The species composition of a forest along with species-specific responses and recovery is likely to be a critical control on forest productivity and species abundance.
Funder
USDA Agriculture and Food Research Initiative
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献