Time-Lag Effect of Climate Conditions on Vegetation Productivity in a Temperate Forest–Grassland Ecotone

Author:

Liu Xinyue,Tian YunORCID,Liu Shuqin,Jiang Lixia,Mao Jun,Jia Xin,Zha Tianshan,Zhang Kebin,Wu Yuqing,Zhou Jianqin

Abstract

Climate conditions can significantly alter the vegetation net primary productivity (NPP) in many of Earth’s ecosystems, although specifics of NPP–climate condition interactions, especially time-lag responses on seasonal scales, remain unclear in ecologically sensitive forest–grassland ecotones. Based on the Moderate-Resolution Imaging Spectroradiometer (MODIS) and meteorological datasets, we analyzed the relationship between NPP and precipitation, temperature, and drought during the growing season (April–August), considering the time-lag effect (0–5 months) at the seasonal scale in Hulunbuir, Inner Mongolia, China from 2000 to 2018. The results revealed a delayed NPP response to precipitation and drought throughout the growing season. In April, the precipitation in the 4 months before (i.e., the winter of the previous year) explained the variation in NPP. In August, the NPP in some areas was influenced by the preceding 1~2 months of drought. The time-lag effect varied with vegetation type and soil texture at different spatial patterns. Compared to grass and crop, broadleaf forest and meadow exhibited a longer legacy of precipitation during the growing season. The length of the time-lag effects of drought on NPP increased with increasing soil clay content during the growing season. The interaction of vegetation types and soil textures can explain 37% of the change in the time-lag effect of the NPP response to PPT on spatial pattern. Our findings suggested that preceding precipitation influences vegetation growth at the early stages of growth, while preceding drought influences vegetation growth in the later stages of growth. The spatial pattern of the time lag was significantly influenced by interaction between vegetation type and soil texture factors. This study highlights the importance of considering the time-lag effects of climate conditions and underlying drivers in further improving the prediction accuracy of NPP and carbon sinks in temperate semiarid forest–grassland ecotones.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3