Hall Effect at the Focus of an Optical Vortex with Linear Polarization

Author:

Kotlyar Victor V.12ORCID,Kovalev Alexey A.12ORCID,Kozlova Elena S.12,Telegin Alexey M.2ORCID

Affiliation:

1. Laser Measurements Laboratory, Image Processing Systems Institute of the RAS—Branch of FSRC “Crystallography & Photonics” of the RAS, 151 Molodogvardeyskaya St., 443001 Samara, Russia

2. Technical Cybernetics Department, Samara National Research University, 34 Moskovskoe Shosse, 443086 Samara, Russia

Abstract

The tight focusing of an optical vortex with an integer topological charge (TC) and linear polarization was considered. We showed that the longitudinal components of the spin angular momentum (SAM) (it was equal to zero) and orbital angular momentum (OAM) (it was equal to the product of the beam power and the TC) vectors averaged over the beam cross-section were separately preserved during the beam propagation. This conservation led to the spin and orbital Hall effects. The spin Hall effect was expressed in the fact that the areas with different signs of the SAM longitudinal component were separated from each other. The orbital Hall effect was marked by the separation of the regions with different rotation directions of the transverse energy flow (clockwise and counterclockwise). There were only four such local regions near the optical axis for any TC. We showed that the total energy flux crossing the focus plane was less than the total beam power since part of the power propagated along the focus surface, while the other part crossed the focus plane in the opposite direction. We also showed that the longitudinal component of the angular momentum (AM) vector was not equal to the sum of the SAM and the OAM. Moreover, there was no summand SAM in the expression for the density of the AM. These quantities were independent of each other. The distributions of the AM and the SAM longitudinal components characterized the orbital and spin Hall effects at the focus, respectively.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3