Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India

Author:

Kumar Manish,Kumari Anuradha,Kushwaha Daniel Prakash,Kumar Pravendra,Malik Anurag,Ali Rawshan,Kuriqi AlbanORCID

Abstract

Modeling the stage-discharge relationship in river flow is crucial in controlling floods, planning sustainable development, managing water resources and economic development, and sustaining the ecosystem. In the present study, two data-driven techniques, namely wavelet-based artificial neural networks (WANN) and a support vector machine with linear and radial basis kernel functions (SVM-LF and SVM-RF), were employed for daily discharge (Q) estimation. The hydrological data of daily stage (H) and discharge (Q) from June to October for 10 years (2004–2013) at the Govindpur station, situated in the Burhabalang river basin, Orissa, were considered for analysis. For model construction, an optimum number of inputs (lags) was extracted using the partial autocorrelation function (PACF) at a 5% level of significance. The outcomes of the WANN, SVM-LF, and SVM-RF models were appraised over the observed value of Q based on performance indicators, viz., root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), Pearson’s correlation coefficient (PCC), and Willmott index (WI), and through visual inspection (time variation, scatter plot, and Taylor diagram). Results of the evaluation showed that the SVM-RF model (RMSE = 104.426 m3/s, NSE = 0.925, PCC = 0.964, WI = 0.979) outperformed the WANN and SVM-LF models with the combination of three inputs, i.e., current stage, one-day antecedent stage, and discharge, during the testing period. In addition, the SVM-RF model was found to be more reliable and robust than the other models and having important implications for water resources management at the study site.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3