Abstract
Modeling the stage-discharge relationship in river flow is crucial in controlling floods, planning sustainable development, managing water resources and economic development, and sustaining the ecosystem. In the present study, two data-driven techniques, namely wavelet-based artificial neural networks (WANN) and a support vector machine with linear and radial basis kernel functions (SVM-LF and SVM-RF), were employed for daily discharge (Q) estimation. The hydrological data of daily stage (H) and discharge (Q) from June to October for 10 years (2004–2013) at the Govindpur station, situated in the Burhabalang river basin, Orissa, were considered for analysis. For model construction, an optimum number of inputs (lags) was extracted using the partial autocorrelation function (PACF) at a 5% level of significance. The outcomes of the WANN, SVM-LF, and SVM-RF models were appraised over the observed value of Q based on performance indicators, viz., root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), Pearson’s correlation coefficient (PCC), and Willmott index (WI), and through visual inspection (time variation, scatter plot, and Taylor diagram). Results of the evaluation showed that the SVM-RF model (RMSE = 104.426 m3/s, NSE = 0.925, PCC = 0.964, WI = 0.979) outperformed the WANN and SVM-LF models with the combination of three inputs, i.e., current stage, one-day antecedent stage, and discharge, during the testing period. In addition, the SVM-RF model was found to be more reliable and robust than the other models and having important implications for water resources management at the study site.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献