Case Study: Improving the Quality of Dairy Cow Reconstruction with a Deep Learning-Based Framework

Author:

Dang ChanggwonORCID,Choi TaejeongORCID,Lee SeungsooORCID,Lee SoohyunORCID,Alam MahboobORCID,Lee SangminORCID,Han SeungkyuORCID,Hoang Duy TangORCID,Lee JaeguORCID,Nguyen Duc ToanORCID

Abstract

Three-dimensional point cloud generation systems from scanning data of a moving camera provide extra information about an object in addition to color. They give access to various prospective study fields for researchers. With applications in animal husbandry, we can analyze the characteristics of the body parts of a dairy cow to improve its fertility and milk production efficiency. However, in the depth image generation from stereo data, previous solutions using traditional stereo matching algorithms have several drawbacks, such as poor-quality depth images and missing information in overexposed regions. Additionally, the use of one camera to reconstruct a comprehensive 3D point cloud of the dairy cow has several challenges. One of these issues is point cloud misalignment when combining two adjacent point clouds with the small overlapping area between them. In addition, another drawback is the difficulty of point cloud generation from objects which have little motion. Therefore, we proposed an integrated system using two cameras to overcome the above disadvantages. Specifically, our framework includes two main parts: data recording part applies state-of-the-art convolutional neural networks to improve the depth image quality, and dairy cow 3D reconstruction part utilizes the simultaneous localization and calibration framework in order to reduce drift and provide a better-quality reconstruction. The experimental results showed that our approach improved the quality of the generated point cloud to some extent. This work provides the input data for dairy cow characteristics analysis with a deep learning approach.

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry

Korea Smart Farm R&D Foundation

Ministry of Agriculture, Food and Rural Affairs

Ministry of Science and ICT (MSIT), Rural Development Administration

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3