Automatic Detection of Liver Cancer Using Hybrid Pre-Trained Models

Author:

Othman Esam,Mahmoud MuhammadORCID,Dhahri HabibORCID,Abdulkader Hatem,Mahmood AwaisORCID,Ibrahim Mina

Abstract

Liver cancer is a life-threatening illness and one of the fastest-growing cancer types in the world. Consequently, the early detection of liver cancer leads to lower mortality rates. This work aims to build a model that will help clinicians determine the type of tumor when it occurs within the liver region by analyzing images of tissue taken from a biopsy of this tumor. Working within this stage requires effort, time, and accumulated experience that must be possessed by a tissue expert to determine whether this tumor is malignant and needs treatment. Thus, a histology expert can make use of this model to obtain an initial diagnosis. This study aims to propose a deep learning model using convolutional neural networks (CNNs), which are able to transfer knowledge from pre-trained global models and decant this knowledge into a single model to help diagnose liver tumors from CT scans. Thus, we obtained a hybrid model capable of detecting CT images of a biopsy of a liver tumor. The best results that we obtained within this research reached an accuracy of 0.995, a precision value of 0.864, and a recall value of 0.979, which are higher than those obtained using other models. It is worth noting that this model was tested on a limited set of data and gave good detection results. This model can be used as an aid to support the decisions of specialists in this field and save their efforts. In addition, it saves the effort and time incurred by the treatment of this type of cancer by specialists, especially during periodic examination campaigns every year.

Funder

King Saud University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3