CT Image Segmentation Method of Liver Tumor Based on Artificial Intelligence Enabled Medical Imaging

Author:

Liu Liping1ORCID,Wang Lin1ORCID,Xu Dan1ORCID,Zhang Hongjie12ORCID,Sharma Ashutosh3ORCID,Tiwari Shailendra4ORCID,Kaur Manjit5ORCID,Khurana Manju4ORCID,Shah Mohd Asif6ORCID

Affiliation:

1. Radiology Department, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, China

2. Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, China

3. Institute of Computer Technology and Information Security, Southern Federal University, Rostov-on-Don, Russia

4. Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India

5. Computer Science Engineering, School of Engineering and Applied Sciences, Bennett University, Greater Noida 201310, India

6. Bakhtar University, Kabul, Afghanistan

Abstract

Artificial intelligence (AI) has made various developments in the image segmentation techniques in the field of medical imaging. This article presents a liver tumor CT image segmentation method based on AI medical imaging-based technology. This study proposed an artificial intelligence-based K-means clustering (KMC) algorithm which is further compared with the region growing (RG) method. In this study, 120 patients with liver tumors in the Post Graduate Institute of Medical Education & Research Hospital, Chandigarh, India, were selected as the research objects, and they were classified according to liver function (Child–Pugh), with 58 cases in grade A and 62 cases in grade B. The experimentation indicates that liver tumor showed low density on plain CT scan, moderate enhancement in the arterial phase of the enhanced scan, and low-density filling defect in the involved blood vessel in the portal venous phase (PVP). It was observed that the CT examination is more sensitive to liver metastasis than hepatocellular carcinoma ( P < 0.05 ). The outcomes obtained depict the good deposition effect of lipiodol chemotherapy emulsion (LCTE) in the contrast group with rich blood type accounted for 53.14% and the patients with the poor blood type accounted for 25.73% showed poor deposition effect. The comparison with the state-of-the-art method reveals that the segmentation effect of the KMC algorithm is better than that of the conventional RG method.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3