Baseline Methods for the Parameter Estimation of the Generalized Pareto Distribution

Author:

Martín JacintoORCID,Parra María IsabelORCID,Pizarro Mario MartínezORCID,Sanjuán Eva LópezORCID

Abstract

In the parameter estimation of limit extreme value distributions, most employed methods only use some of the available data. Using the peaks-over-threshold method for Generalized Pareto Distribution (GPD), only the observations above a certain threshold are considered; therefore, a big amount of information is wasted. The aim of this work is to make the most of the information provided by the observations in order to improve the accuracy of Bayesian parameter estimation. We present two new Bayesian methods to estimate the parameters of the GPD, taking into account the whole data set from the baseline distribution and the existing relations between the baseline and the limit GPD parameters in order to define highly informative priors. We make a comparison between the Bayesian Metropolis–Hastings algorithm with data over the threshold and the new methods when the baseline distribution is a stable distribution, whose properties assure we can reduce the problem to study standard distributions and also allow us to propose new estimators for the parameters of the tail distribution. Specifically, three cases of stable distributions were considered: Normal, Lévy and Cauchy distributions, as main examples of the different behaviors of the tails of a distribution. Nevertheless, the methods would be applicable to many other baseline distributions through finding relations between baseline and GPD parameters via studies of simulations. To illustrate this situation, we study the application of the methods with real data of air pollution in Badajoz (Spain), whose baseline distribution fits a Gamma, and show that the baseline methods improve estimates compared to the Bayesian Metropolis–Hastings algorithm.

Funder

Ministry of Economy, Industry and Competitiveness

Junta de Extremadura

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3