Estimating cutoff values for diagnostic tests to achieve target specificity using extreme value theory

Author:

Pugh Sierra,Fosdick Bailey K.,Nehring Mary,Gallichotte Emily N.,VandeWoude Sue,Wilson Ander

Abstract

Abstract Background Rapidly developing tests for emerging diseases is critical for early disease monitoring. In the early stages of an epidemic, when low prevalences are expected, high specificity tests are desired to avoid numerous false positives. Selecting a cutoff to classify positive and negative test results that has the desired operating characteristics, such as specificity, is challenging for new tests because of limited validation data with known disease status. While there is ample statistical literature on estimating quantiles of a distribution, there is limited evidence on estimating extreme quantiles from limited validation data and the resulting test characteristics in the disease testing context. Methods We propose using extreme value theory to select a cutoff with predetermined specificity by fitting a Pareto distribution to the upper tail of the negative controls. We compared this method to five previously proposed cutoff selection methods in a data analysis and simulation study. We analyzed COVID-19 enzyme linked immunosorbent assay antibody test results from long-term care facilities and skilled nursing staff in Colorado between May and December of 2020. Results We found the extreme value approach had minimal bias when targeting a specificity of 0.995. Using the empirical quantile of the negative controls performed well when targeting a specificity of 0.95. The higher target specificity is preferred for overall test accuracy when prevalence is low, whereas the lower target specificity is preferred when prevalence is higher and resulted in less variable prevalence estimation. Discussion While commonly used, the normal based methods showed considerable bias compared to the empirical and extreme value theory-based methods. Conclusions When determining disease testing cutoffs from small training data samples, we recommend using the extreme value based-methods when targeting a high specificity and the empirical quantile when targeting a lower specificity.

Funder

Colorado State University

Boettcher Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3