Author:
Pugh Sierra,Fosdick Bailey K.,Nehring Mary,Gallichotte Emily N.,VandeWoude Sue,Wilson Ander
Abstract
Abstract
Background
Rapidly developing tests for emerging diseases is critical for early disease monitoring. In the early stages of an epidemic, when low prevalences are expected, high specificity tests are desired to avoid numerous false positives. Selecting a cutoff to classify positive and negative test results that has the desired operating characteristics, such as specificity, is challenging for new tests because of limited validation data with known disease status. While there is ample statistical literature on estimating quantiles of a distribution, there is limited evidence on estimating extreme quantiles from limited validation data and the resulting test characteristics in the disease testing context.
Methods
We propose using extreme value theory to select a cutoff with predetermined specificity by fitting a Pareto distribution to the upper tail of the negative controls. We compared this method to five previously proposed cutoff selection methods in a data analysis and simulation study. We analyzed COVID-19 enzyme linked immunosorbent assay antibody test results from long-term care facilities and skilled nursing staff in Colorado between May and December of 2020.
Results
We found the extreme value approach had minimal bias when targeting a specificity of 0.995. Using the empirical quantile of the negative controls performed well when targeting a specificity of 0.95. The higher target specificity is preferred for overall test accuracy when prevalence is low, whereas the lower target specificity is preferred when prevalence is higher and resulted in less variable prevalence estimation.
Discussion
While commonly used, the normal based methods showed considerable bias compared to the empirical and extreme value theory-based methods.
Conclusions
When determining disease testing cutoffs from small training data samples, we recommend using the extreme value based-methods when targeting a high specificity and the empirical quantile when targeting a lower specificity.
Funder
Colorado State University
Boettcher Foundation
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Levin AT, Owusu-Boaitey N, Pugh S, Fosdick BK, Zwi AB, Malani A, et al. Assessing the burden of COVID-19 in developing countries: Systematic review, meta-analysis and public policy implications. BMJ Glob Health. 2022;7(5):e008477.
2. Takahashi S, Greenhouse B, Rodríguez-Barraquer I. Are seroprevalence estimates for severe acute respiratory syndrome coronavirus 2 biased? J Infect Dis. 2020;222(11):1772–5.
3. Klumpp-Thomas C, Kalish H, Drew M, Hunsberger S, Snead K, Fay MP, et al. Standardization of ELISA protocols for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling. Nat Commun. 2021;12(1):113.
4. Centers for Disease Control and Prevention. Interim Guidelines for COVID-19 Antibody Testing. Published May 23, 2020. Updated August 1, 2020. https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html. Accessed 7 Jan 2021.
5. Devanarayan V, Smith WC, Brunelle RL, Seger ME, Krug K, Bowsher RR. Recommendations for systematic statistical computation of immunogenicity cut points. AAPS J. 2017;19(5):1487–98.