Biocatalytic Approach for Novel Functional Oligoesters of ε-Caprolactone and Malic Acid

Author:

Dreavă Diana Maria,Benea Ioana Cristina,Bîtcan Ioan,Todea AnamariaORCID,Șișu Eugen,Puiu Maria,Peter FranciscORCID

Abstract

Biocatalysis has developed in the last decades as a major tool for green polymer synthesis. The particular ability of lipases to catalyze the synthesis of novel polymeric materials has been demonstrated for a large range of substrates. In this work, novel functional oligoesters were synthesized from ε-caprolactone and D,L/L-malic acid by a green and sustainable route, using two commercially available immobilized lipases as catalysts. The reactions were carried out at different molar ratios of the comonomers in organic solvents, but the best results were obtained in solvent-free systems. Linear and cyclic oligomeric products with average molecular weights of about 1500 Da were synthesized, and the formed oligoesters were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The oligoester synthesis was not enantioselective in the studied reaction conditions. The operational stability of both biocatalysts (Novozyme 435 and GF-CalB-IM) was excellent after reutilization in 13 batch reaction cycles. The thermal properties of the reaction products were investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis. The presence of polar pendant groups in the structure of these oligomers could widen the possible applications compared to the oligomers of ε-caprolactone or allow the conversion to other functional materials.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3