Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives

Author:

Gandini Alessandro,M. Lacerda TalitaORCID

Abstract

A progressively increasing concern about the environmental impacts of the whole polymer industry has boosted the design of less aggressive technologies that allow for the maximum use of carbon atoms, and reduced dependence on the fossil platform. Progresses related to the former approach are mostly based on the concept of the circular economy, which aims at a thorough use of raw materials, from production to disposal. The latter, however, has been considered a priority nowadays, as short-term biological processes can efficiently provide a myriad of chemicals for the polymer industry. Polymers from renewable resources are widely established in research and technology facilities from all over the world, and a broader consolidation of such materials is expected in a near future. Herein, an up-to-date overview of the most recent and relevant contributions dedicated to the production of monomers and polymers from biomass is presented. We provide some basic issues related to the preparation of polymers from renewable resources to discuss ongoing strategies that can be used to achieve original polymers and systems thereof.

Funder

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference179 articles.

1. Statista https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/

2. Sustainable polymers from renewable resources

3. State of art review on Life Cycle Assessment of polymers

4. Synthesis of biodegradable polymers from renewable resources

5. Monomers Polymers and Composites from Renewable Resources,2008

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3