Detection Range of Acoustic Receivers in a Large Hydropower Reservoir

Author:

Babin AmandaORCID,Fitzpatrick Lauren,Linnansaari Tommi,Curry R. Allen

Abstract

Acoustic telemetry manufacturers report estimated detection ranges under idealized conditions, but environmental conditions such as water depth, substrate type, and turbulence can affect the range of reliable detection. Range testing of low (Vemco V7 136 dB re 1µPa@1m) and high power (V13 147 dB re 1µPa@1m) acoustic transmitters (tags) was performed near a hydropower generating station and its associated reservoir using both active (mobile; VR100) and passive (stationary; VR2W/VR2Tx) receivers. Low power tags are typically used to track small fish such as juvenile Atlantic salmon (Salmo salar), whereas high power tags are typically used to track larger fish such as adult salmon. The results found herein were applied to concurrent salmon telemetry studies. Detection ranges of the low power tags were within 246–351 ± 20–70 m (mean ± SE), and the high power tags were within 537–1106 ± 53–272 m. Observed detection ranges were comparable or higher to manufacturer estimates for both tag types being detected by passive receivers, and were lower than expected for both tag types being detected by active receivers. Passive receivers were further tested by mooring a fixed sentinel tag (low power) on a receiver line at the hydropower site for 50 days. The sentinel tag detection range of 212 m was less than the expected range of 280–292 m, and was not found to be significantly impacted by wind speed. There was evidence of a hydropower effect on detection probability (up to 95% reduction) of both tag types for the active receiver, and detection ranges were significantly lower at the hydropower site than the reservoir site for the high power tag. The results of this study give insight to the initial design of acoustic telemetry studies beyond what can be gathered from manufacturer’s estimates, but rather near hydropower facilities and within large reservoirs; however, detection ranges reported herein do not replace the importance of range testing in site-specific conditions.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3