Quantifying Predictive Uncertainty and Feature Selection in River Bed Load Estimation: A Multi-Model Machine Learning Approach with Particle Swarm Optimization

Author:

Le Xuan-Hien12ORCID,Huynh Trung Tin3ORCID,Song Mingeun1,Lee Giha1

Affiliation:

1. Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang, Sangju 37224, Republic of Korea

2. Faculty of Water Resources Engineering, Thuyloi University, 175 Tay Son, Dong Da, Hanoi 116705, Vietnam

3. Bach Khoa Ho Chi Minh City Technology Joint Stock Company, Ho Chi Minh City University of Technology, VNU-HCMC, Ho Chi Minh 70000, Vietnam

Abstract

This study presents a comprehensive multi-model machine learning (ML) approach to predict river bed load, addressing the challenge of quantifying predictive uncertainty in fluvial geomorphology. Six ML models—random forest (RF), categorical boosting (CAT), extra tree regression (ETR), gradient boosting machine (GBM), Bayesian regression model (BRM), and K-nearest neighbors (KNNs)—were thoroughly evaluated across several performance metrics like root mean square error (RMSE), and correlation coefficient (R). To enhance model training and optimize performance, particle swarm optimization (PSO) was employed for hyperparameter tuning across all the models, leveraging its capability to efficiently explore complex hyperparameter spaces. Our findings indicated that RF, GBM, CAT, and ETR demonstrate superior predictive performance (R score > 0.936), benefiting significantly from PSO. In contrast, BRM displayed lower performance (0.838), indicating challenges with Bayesian approaches. The feature importance analysis, including permutation feature and SHAP values, highlighted the non-linear interdependencies between the variables, with river discharge (Q), bed slope (S), and flow width (W) being the most influential. This study also examined the specific impact of individual variables on model performance by adding and excluding individual variables, which is particularly meaningful when choosing input variables for the model, especially in limited data conditions. Uncertainty quantification through Monte Carlo simulations highlighted the enhanced predictability and reliability of models with larger datasets. The correlation between increased training data and improved model precision was evident in the consistent rise in mean R scores and reduction in standard deviations as the sample size increased. This research underscored the potential of advanced ensemble methods and PSO to mitigate the limitations of single-predictor models and exploit collective model strengths, thereby improving the reliability of predictions in river bed load estimation. The insights from this study provide a valuable framework for future research directions focused on optimizing ensemble configurations for hydro-dynamic modeling.

Funder

Korea Ministry of Environment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3