Affiliation:
1. Unit of Environmental Engineering, Department of Infrastructure Engineering, University of Innsbruck, 6020 Innsbruck, Austria
Abstract
Water distribution networks (WDNs) have a crucial task: to reliably provide sufficient and high-quality water while optimizing financial resources. Achieving both reliability and resilience is vital. However, oversizing capacities can be costly and detrimental to water quality due to stagnation. Designing WDNs requires the consideration of these factors, resulting in a multi-objective optimization task typically addressed with evolutionary algorithms. Yet, for large WDNs with numerous decision variables, such algorithms become impractical. Complex network analysis offers an efficient approach, particularly with mathematical graphs representing WDNs. Recently, a graph-based multi-objective design approach using a customized measure (demand edge betweenness centrality) and a surrogate method for water quality assessment in large WDNs were developed. This paper combines these graph-based approaches into an optimization framework suitable for complex, real-world WDNs. The framework aims to minimize costs, maximize resilience, and exclude designs with poor water quality. It is demonstrated on a toy example, and its computational efficiency is shown by a real case study with 4000 decision variables, obtaining results in just 18.5 s compared to weeks of computation time with a state-of-the-art evolutionary algorithm.
Funder
Austrian security research program KIRAS of the Federal Ministry of Finance
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献