A Century of Topological Coevolution of Complex Infrastructure Networks in an Alpine City

Author:

Zischg Jonatan1ORCID,Klinkhamer Christopher2,Zhan Xianyuan3,Rao P. Suresh C.2,Sitzenfrei Robert1

Affiliation:

1. Unit of Environmental Engineering, Department of Infrastructure, University of Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria

2. Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA

3. Urban Computing Business Unit, JD Finance No. 18 Kechuang 11 Street, Beijing, China

Abstract

In this paper, we used complex network analysis approaches to investigate topological coevolution over a century for three different urban infrastructure networks. We applied network analyses to a unique time-stamped network data set of an Alpine case study, representing the historical development of the town and its infrastructure over the past 108 years. The analyzed infrastructure includes the water distribution network (WDN), the urban drainage network (UDN), and the road network (RN). We use the dual representation of the network by using the Hierarchical Intersection Continuity Negotiation (HICN) approach, with pipes or roads as nodes and their intersections as edges. The functional topologies of the networks are analyzed based on the dual graphs, providing insights beyond a conventional graph (primal mapping) analysis. We observe that the RN, WDN, and UDN all exhibit heavy tailed node degree distributions [P(k)] with high dispersion around the mean. In 50 percent of the investigated networks, P(k) can be approximated with truncated [Pareto] power-law functions, as they are known for scale-free networks. Structural differences between the three evolving network types resulting from different functionalities and system states are reflected in the P(k) and other complex network metrics. Small-world tendencies are identified by comparing the networks with their random and regular lattice network equivalents. Furthermore, we show the remapping of the dual network characteristics to the spatial map and the identification of criticalities among different network types through co-location analysis and discuss possibilities for further applications.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3