Optimization of Compression Molding Process Parameters for NFPC Manufacturing Using Taguchi Design of Experiment and Moldflow Analysis

Author:

Chauhan VardaanORCID,Kärki Timo,Varis Juha

Abstract

This paper presents the application of Taguchi design of experiment and Autodesk Moldflow® simulation in finding the optimal processing parameters for the manufacturing of natural fiber–polymer composite products. The material used in the study is a composite of recycled thermoplastic reinforced with 10% wood fibers. For the study, four critical processing parameters, namely compression time, mold temperature, melt temperate, and pressure, were selected for optimization. Process analysis was carried out in Moldflow® utilizing a combination of process parameters based on an L9 orthogonal array. Later, the warpage output from Moldflow® simulation was converted into a signal-to-noise (S/N) ratio response, and the optimum values of each processing parameter were obtained using the smaller-the-better quality characteristic. The results show that the optimum values were 60 °C, 40 s, 210 °C, and 600 kN for the mold temperature, compression time, melt temperature, and pressure, respectively. Afterward, a confirmation test was performed to test the optimum parameters. Using analysis of variance (ANOVA), melt temperature was found to be the most significant processing parameter, followed by mold temperature, compression time, and pressure.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3