Oxidative Stress in Parasitic Diseases—Reactive Oxygen Species as Mediators of Interactions between the Host and the Parasites

Author:

Pawłowska Marta1ORCID,Mila-Kierzenkowska Celestyna1ORCID,Szczegielniak Jan23,Woźniak Alina1ORCID

Affiliation:

1. Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland

2. Physiotherapy Department, Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland

3. Ministry of Internal Affairs and Administration’s Specialist Hospital of St. John Paul II, 48-340 Glucholazy, Poland

Abstract

Oxidative stress plays a significant role in the development and course of parasitic infections, both in the attacked host organism and the parasite organism struggling to survive. The host uses large amounts of reactive oxygen species (ROS), mainly superoxide anion (O2•−) and hydrogen peroxide (H2O2), to fight the developing parasitic disease. On the other hand, the parasite develops the most effective defense mechanisms and resistance to the effects of ROS and strives to survive in the host organism it has colonized, using the resources and living environment available for its development and causing the host’s weakening. The paper reviews the literature on the role of oxidative stress in parasitic diseases, which are the most critical epidemiological problem worldwide. The most common parasitosis in the world is malaria, with 300–500 million new cases and about 1 million deaths reported annually. In Europe and Poland, the essential problem is intestinal parasites. Due to a parasitic infection, the concentration of antioxidants in the host decreases, and the concentration of products of cellular components oxidation increases. In response to the increased number of reactive oxygen species attacking it, the parasites have developed effective defense mechanisms, including primarily the action of antioxidant enzymes, especially superoxide dismutase and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-dependent complexes glutathione and thioredoxin.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3