Abstract
Chromatin modifiers play a crucial role in maintaining cell identity through modulation of gene expression patterns. Their deregulation can have profound effects on cell fate and functions. Among epigenetic regulators, the MECP2 protein is particularly attractive. Mutations in the Mecp2 gene are responsible for more than 90% of cases of Rett syndrome (RTT), a progressive neurodevelopmental disorder. As a chromatin modulator, MECP2 can have a key role in the government of stem cell biology. Previously, we showed that deregulated MECP2 expression triggers senescence in mesenchymal stromal cells (MSCs) from (RTT) patients. Over the last few decades, it has emerged that senescent cells show alterations in the metabolic state. Metabolic changes related to stem cell senescence are particularly detrimental, since they contribute to the exhaustion of stem cell compartments, which in turn determine the falling in tissue renewal and functionality. Herein, we dissect the role of impaired MECP2 function in triggering senescence along with other senescence-related aspects, such as metabolism, in MSCs from a mouse model of RTT. We found that MECP2 deficiencies lead to senescence and impaired mitochondrial energy production. Our results support the idea that an alteration in mitochondria metabolic functions could play an important role in the pathogenesis of RTT.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献