Affiliation:
1. Department of Orthopaedic The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
2. Key Laboratory of Orthopaedics of Zhejiang Province Wenzhou China
3. School of Medicine Shanghai University Shanghai China
Abstract
AbstractOxidative stress is preferentially treated as a risk factor for the development and progression of osteoporosis. Corynoline as a component of Corydalis bungeana Turcz presents antioxidative and anti‐inflammatory properties. In the present study, the effects of Corynoline on osteoblasts following hydrogen peroxide (H2O2)‐induced injury were evaluated accompanied by the investigation of the molecular mechanisms involved. It was found that Corynoline downregulated the intracellular reactive oxygen species (ROS) generation and restored the osteogenic potential of the disrupted osteoblasts by H2O2 exposure. Furthermore, Corynoline was revealed to activate the Nrf2/HO‐1 signaling pathway, while ML385 (an Nrf2 inhibitor) would prevent the Corynoline‐mediated positive effects on the disrupted osteoblasts. In terms of the animal experiments, Corynoline treatment contributed to a significantly alleviated bone loss. These findings indicate that Corynoline may significantly attenuate the H2O2‐induced oxidative damage of osteoblasts via the Nrf2/HO‐1 signaling pathway, providing novel insights to the development of treatments for osteoporosis induced by oxidative injury.
Funder
Wenzhou Municipal Science and Technology Bureau
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献