Abstract
Thermal stress of the rotor in a squirrel cage induction motor is generated due to the temperature rise, it is also one of the factors causing the broken bar fault because the structure of the rotor would be destroyed if the stress of the rotor bars exceed the strength limit. The coupled fluid-thermal analysis for the induction motor with healthy and broken bar rotors is performed in this paper. Much concern has been committed to establishment of the fluid model on the basis of computational fluid dynamic (CFD) theory. The heat field of the prototypes is analysed so that the effect of the asymmetrical rotor on the motor heat performance can be investigated in depth. Eventually, the efficiency of the presented model and method, for the totally enclosed fan cooled (TEFC) induction motor, can be verified through experimental results. In addition, this paper reports a quantitative analysis of the heat flux distribution of the fault rotor, and the heat flux density of the bars is investigated in detail. Then, the part most likely to break in the rotor as a result of the thermal load is identified.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献