Determination of Aerodynamic Losses of Electric Motors

Author:

Gebauer MarekORCID,Blejchař Tomáš,Brzobohatý Tomáš,Karásek Tomáš,Nevřela Miroslav

Abstract

The energy efficiency of machines is nowadays an intensively studied problem. The efficiency of the induction motor is dominantly influenced by the rotor’s and stator winding’s temperature. The main goal of the research presented in this paper is to develop a methodology based on Computational Fluid Dynamics (CFD) analysis of internal and external aerodynamics, which is necessary for the optimisation of cooling of the induction motors. In this paper, the theoretical, as well as the numerical study of the internal and external aerodynamics of the induction motor, is described and verified by the experimental measurements. In the CFD-based numerical study, the Reynolds-averaged Navier–Stokes (RANS) turbulence modelling approach was applied to the flow field simulations inside and outside the induction motor. The complexity of the solved problem is increased not only by the geometric asymmetry but also by the flow’s asymmetric character caused by the fan’s rotation to cool the motor casing. This increases demand, especially on computational resources, as it is impossible to create a simplified numerical model incorporating symmetry. The volume flow of the cooling air and velocity between ribs was measured for the experimental study. Comparing the results of the Computational Fluid Dynamics (CFD) simulations and data obtained from the experimental measurement, we concluded that the results of CFD simulations are in good relationship with the results of experimental measurement and analytical approximations. An experimentally validated CFD model of the induction motor, the so-called digital twin, will be in the future used for virtual optimisation of the new designs concerning minimising losses and maximising efficiency, respectively.

Funder

Ministry of Industry and Trade Czech Republic

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3