Optimization of the Real-Time Response to Roadside Incidents through Heuristic and Linear Programming

Author:

Buil RomanORCID,de Armas JesicaORCID,Riera DanielORCID,Orozco SandraORCID

Abstract

This paper presents a solution for a real-world roadside assistance problem. Roadside incidents can happen at any time. Depending on the type of incident, a specific resource from the roadside assistance company can be sent on site. The problem of allocating resources to these road-side incidents can be stated as a multi-objective function and a large set of constraints, including priorities and preferences, resource capacities and skills, calendars, and extra hours. The request from the client is to a have real-time response and to attempt to use only open source tools. The optimization objectives to consider are the minimization of the operational costs and the minimization of the time to arrive to each incident. In this work, an innovative approach to near-optimally solving this problem in real-time is proposed, combining a heuristic approach and linear programming. The results show the great potential of this approach: operational costs were reduced by 19%, the use of external providers was reduced to half, and the productivity of the resources owned by the client was significantly increased.

Funder

Generalitat de Catalunya

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective modelling of a roadside mowing problem: a case study in France;2022 IEEE 28th International Conference on Engineering, Technology and Innovation (ICE/ITMC) & 31st International Association For Management of Technology (IAMOT) Joint Conference;2022-06-19

2. GIS-Based Simulated Annealing Algorithm for the Optimum Location of Fire Stations in the Madrid Region, Spain: Monitoring the Collapse Index;Applied Sciences;2021-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3