Steric Effects on Space Electroosmotic Thrusters in Soft Nanochannels

Author:

Zheng Jiaxuan,Jia Beinan,Jian Yongjun

Abstract

The influence of steric effects on the performances of space electroosmotic thrusters (EOTs) was numerically delineated in soft nanochannels for which its walls are covered with polyelectrolyte materials. The size effect of the ionic species, namely the steric effect, is neglected in many previous research studies, but it has vital influences on electrostatic potential and electroosmotic velocity, which is further introduced into the present study in order to understand and improve the exploration of nano electroosmotic thrusters with soft channels. The thruster’s thrust, specific impulse, total input power, thruster efficiency and thrust-to-power ratio are computed based on finite difference methods. It is found that the thruster’s thrust and specific impulse increase with the steric parameter while the efficiency and thrust-to-power ratio possess opposite trends due to the enhancement of Joule heating dissipation. For real situations with the consideration of ion size, although the thruster’s thrust could be promoted, the efficiency is only 30–70%, and the peak values of thrust-to-power ratio fade away.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia

Inner Mongolia Grassland Talent

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference51 articles.

1. Control of Deep-Space Formation-Flying Spacecraft; Relative Sensing and Switched Information

2. Vaporizing liquid microthruster concept: Preliminary results of initial feasibility studies;Mueller;Micropropuls. Small Spacecr.,2000

3. Electric micropropulsion systems

4. Propulsion options for primary thrust and attitude control of microspacecraft;De Groot;Microsatellites Res. Tools COSPAR Colloq. Ser.,1999

5. On the capabilities of nano electrokinetic thrusters for space propulsion

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3