Steric Effects on Electroosmotic Nano-Thrusters under High Zeta Potentials

Author:

Zheng Jiaxuan,An Siyi,Jian YongjunORCID

Abstract

Here, space electroosmotic thrusters in a rigid nanochannel with high wall zeta potentials are investigated numerically, for the first time, considering the effect of finite size of the ionic species. The effect, which is called a steric effect, is often neglected in research about micro/nano thrusters. However, it has vital influences on the electric potential and flow velocity in electric double layers, so that the thruster performances generated by the fluid motion are further affected. These performances, including thrust, specific impulse, thruster efficiency, and the thrust-to-power ratio, are described by using numerical algorithms, after obtaining the electric potential and velocity distributions under high wall zeta potentials ranging from −25.7 mV to −128.5 mV. As expected, the zeta potential can promote the development of thruster performances so as to satisfy the requirement of space missions. Moreover, for real situation with consideration of the steric effect, the thruster thrust and efficiency significantly decrease to 5–30 micro Newtons and 80–90%, respectively, but the thrust-to-power ratio is opposite, and expends a short specific impulse of about 50–110 s.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia Autonomous Region of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference48 articles.

1. Reducing Space Mission Cost;Wertz,1992

2. Space Mission Analysis and Design;Larson,1992

3. Vaporizing liquid microthruster concept: Preliminary results of initial feasibility studies;Mueller,2000

4. Electric micropropulsion systems

5. Propulsion options for primary thrust and attitude control of microspacecraft, in Microsatellites as Research Tools;De Groot,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3