Abstract
Hybrid rigid–flexible mechanisms are a type of compliant mechanism that combines rigid and flexible elements, being that their mobility is due to rigid-body joints and the relative flexibility of bendable rods. Two of the modeling methods of flexible rods are the Cosserat rod model and its simplification, the Kirchhoff rod model. Both of them present a system of differential equations that must be solved in conjunction with the boundary constraints of the rod, leading to a boundary value problem (BVP). In this work, two methods to solve this BVP are applied to analyze the influence of external loads in the movement of hybrid compliant mechanisms. First, a shooting method (SM) is used to integrate directly the shape of the flexible rod and the forces that appear in it. Then, an integration with elliptic integrals (EI) is carried out to solve the workspace of the compliant element, considering its buckling mode. Applying both methods, an algorithm that obtains the locus of all possible trajectories of the mechanism’s coupler point, and detects the buckling mode change, is developed. This algorithm also allows calculating all possible circuits of the mechanism. Thus, the performance of this method within the path analysis of mechanisms is demonstrated.
Funder
Ministerio de Economía y Competitividad
Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献