Railway Point-Operating Machine Fault Detection Using Unlabeled Signaling Sensor Data

Author:

Mistry Pritesh,Lane Phil,Allen Paul

Abstract

In this study, we propose a methodology for the identification of potential fault occurrences of railway point-operating machines, using unlabeled signal sensor data. Data supplied by Network Rail, UK, is processed using a fast Fourier transform signal processing approach, coupled with the mean and max current levels to identify potential faults in point-operating machines. The method developed can dynamically adapt to the behavioral characteristics of individual point-operating machines, thereby providing bespoke condition monitoring capabilities in situ and in real time. The work described in this paper is not unique to railway point-operating machines, rather the data pre-processing and methodology is readily applicable to any motorized device fitted with current sensing capabilities. The novelty of our approach is that it does not require pre-labelled data with historical fault occurrences and therefore closely resembles problems of the real world, with application for smart city infrastructure. Lastly, we demonstrate the problems faced with handling such data and the capability of our methodology to dynamically adapt to diverse data presentations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3