Evaluation of Solidified Wastewater Treatment Sludge as a Potential SCM in Pervious Concrete Pavements

Author:

Govedarica OgnjenORCID,Aškrabić Marina,Hadnađev-Kostić Milica,Vulić TatjanaORCID,Lekić BranislavaORCID,Rajaković-Ognjanović Vladana,Zakić DimitrijeORCID

Abstract

Waste and recycled materials have recently been used in the construction industry to comply with the principles of circular economy and sustainable development. The aim of this paper is to examine the potentials of solidified wastewater treatment sludge (SWWTS) as a supplementary cementitious material (SCM) in the production of lightweight pervious concrete pavers (LWPCP) suitable for pedestrian trails and rooftops (green) that comply with EU standards. Detailed characterization of SWWTS was performed, in order to understand its properties related to application as SCM, which led to the conclusion that it may be applied only as a filler, having 89.5% of Ca(OH)2. After thorough characterization, LWPCP samples were prepared and testing of physical and mechanical properties was conducted. The research showed that partial replacement of cement with SWWTS led to the decrease of all mechanical properties, ranging between 3.91 and 5.81 MPa for compressive strength and 0.97 to 1.23 MPa for flexural strength. However, all of the investigated mixtures showed a value higher than 3.5 MPa, which was defined as the lowest compressive strength in the range of pervious concrete properties. The addition of SWWTS led to a slight decrease in bulk density of the mixtures and an increase in water absorption. This could be explained by the reduction in hydration products that would fill in the micropores of the matrix, since SWWTS showed no pozzolanic reactivity. Pore sizes that prevail in the tested binder matrices are in accordance with the results measured on ordinary pervious concrete (the largest fraction of pores had a diameter between 0.02 and 0.2 μm). Low thermal conductivity nominates produced pavers as potential rooftop elements.

Funder

Science Fund of the Republic of Serbia

Ministry of Education, Science and Technological Development of Republic of Serbia

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3