Early-Age Cement Paste Temperature Development Monitoring Using Infrared Thermography and Thermo-Sensors

Author:

Živanović Nevena1,Aškrabić Marina1,Savić Aleksandar1ORCID,Stević Miša2,Stević Zoran3ORCID

Affiliation:

1. Faculty of Civil Engineering, University of Belgrade, 11000 Belgrade, Serbia

2. Elsis, 11070 Belgrade, Serbia

3. Technical Faculty Bor, School of Electrical Engineering Belgrade, University of Belgrade, 11000 Belgrade, Serbia

Abstract

Infrared thermography is an advanced technique usually applied for the assessment of thermal losses through different elements of the building envelope, or as a method for detection of damage (cracks) in reinforced concrete elements, such as bridges. Use of this method for the investigation of temperature development during early cement hydration is still an evolving area of research. For the purpose of verifying the reliability of the method, two types of cubic samples of different heights were prepared using a cement-based paste, with 20% of cement (by mass) replaced with fly ash. Temperature development was measured in two ways: using infrared thermography and thermo-sensors embedded in the samples. Additionally, the obtained results were modeled using the asymmetric Gaussian function. Peak temperatures in the middle of each sample were higher than the peak temperatures measured on the sample surface, with differences ranging between 2 °C and 4 °C. Differences between the temperature measurements of the thermo-sensors placed on the surface of the sample and thermal camera were lower than 2 °C. Very good compliance of the results was obtained for both the camera and the surface sensors measurements, as well as for the modeling coefficients.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3