Observing Planetary and Pre-Planetary Nebulae with the James Webb Space Telescope

Author:

Sahai RaghvendraORCID

Abstract

Most stars in the Universe that leave the main sequence in a Hubble time will end their lives evolving through the Planetary Nebula (PN) evolutionary phase. The heavy mass loss which occurs during the preceding Asymptotic Giant Branch (AGB) phase is important across astrophysics, dramatically changing the course of stellar evolution, contributing to the dust content of the interstellar medium, and influencing its chemical composition. The evolution from the AGB phase to the PN phases remains poorly understood, especially the dramatic transformation that occurs in the morphology of the mass-ejecta as AGB stars enter the post-AGB phase and their round circumstellar envelopes evolve into pre-PNe (PPNe) and then to PNe. The majority of PPNe and PNe deviate strongly from spherical symmetry. Strong binary interactions most likely play a fundamental role in influencing this evolutionary phase, but the details of these interactions remain shrouded in mystery. Thus, understanding the formation and evolution of these objects is of wide astrophysical importance. PNe have long been known to emit across a very large span of wavelengths, from the radio to X-rays. Extensive use of space-based observatories at X-ray (Chandra/ XMM-Newton), optical (HST) and mid- to far-infrared (Spitzer, Herschel) wavelengths in recent years has produced significant new advances in our knowledge of these objects. Given the expected advent of the James Webb Space Telescope (JWST) in the near future, we focus on future high-angular-resolution, high-sensitivity observations at near and mid-IR wavelengths with JWST that can help in addressing the major unsolved problems in the study of PNe and their progenitors.

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3