Abstract
The mean-field model is one of the basic models of the dynamo theory, which describes the magnetic field generation in a turbulent astrophysical plasma. The first mean-field equations were obtained by Steenbeck, Krause and Rädler for two-scale turbulence under isotropy and uniformity assumptions. In this article we develop the path integral approach to obtain mean-field equations for a short-correlated random velocity field in anisotropic streams. By this model we analyse effects of anisotropy and show the relation between dynamo growth and anisotropic tensors of helicity/turbulent diffusivity. Considering particular examples and comparing results with isotropic cases we demonstrate several mean-field effects: super-exponential growth at initial times, complex dependence of harmonics growth on the helicity tensor structure, when generation is possible for near-zero component or near-zero helicity trace, increase of the averaged magnetic field inclined to the initial current density that leads to effective Lorentz back-reaction and violation of force-free conditions.
Funder
Russian Foundation for Basic Research
BASIS
Subject
Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献