Grand Minima in a spherical non-kinematic α2Ω mean-field dynamo model

Author:

Simard Corinne,Charbonneau Paul

Abstract

We present a non-kinematic axisymetric α2Ω mean-field dynamo model in which the complete α-tensor and mean differential rotation profile are both extracted from a global magnetohydrodynamical simulation of solar convection producing cycling large-scale magnetic fields. The nonlinear backreaction of the Lorentz force on differential rotation is the only amplitude-limiting mechanism introduced in the mean-field model. We compare and contrast the amplitude modulation patterns characterizing this mean-field dynamo, to those already well-studied in the context of non-kinematic αΩ models using a scalar α-effect. As in the latter, we find that large quasi-periodic modulation of the primary cycle are produced at low magnetic Prandtl number (Pm), with the ratio of modulation period to the primary cycle period scaling inversely with Pm. The variations of differential rotation remain well within the bounds set by observed solar torsional oscillations. In this low-Pm regime, moderately supercritical solutions can also exhibit aperiodic Maunder Minimum-like periods of strongly reduced cycle amplitude. The inter-event waiting time distribution is approximately exponential, in agreement with solar activity reconstructions based on cosmogenic radioisotopes. Secular variations in low-latitude surface differential rotation during Grand Minima, as compared to epochs of normal cyclic behavior, are commensurate in amplitude with historical inferences based on sunspot drawings. Our modeling results suggest that the low levels of observed variations in the solar differential rotation in the course of the activity cycle may nonetheless contribute to, or perhaps even dominate, the regulation of the magnetic cycle amplitude.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3