Evaluation of Groundwater Quality for Irrigation in Deep Aquifers Using Multiple Graphical and Indexing Approaches Supported with Machine Learning Models and GIS Techniques, Souf Valley, Algeria

Author:

Eid Mohamed HamdyORCID,Elbagory MohssenORCID,Tamma Ahmed A.,Gad MohamedORCID,Elsayed SalahORCID,Hussein HendORCID,Moghanm Farahat S.ORCID,Omara Alaa El-DeinORCID,Kovács Attila,Péter Szűcs

Abstract

Irrigation has made a significant contribution to supporting the population’s expanding food demands, as well as promoting economic growth in irrigated regions. The current investigation was carried out in order to estimate the quality of the groundwater for agricultural viability in the Algerian Desert using various water quality indices and geographic information systems (GIS). In addition, support vector machine regression (SVMR) was applied to forecast eight irrigation water quality indices (IWQIs), such as the irrigation water quality index (IWQI), sodium adsorption ratio (SAR), sodium percentage (Na%), soluble sodium percentage (SSP), potential salinity (PS), Kelly index (KI), permeability index (PI), potential salinity (PS), permeability index (PI), and residual sodium carbonate (RSC). Several physicochemical variables, such as temperature (T°), hydrogen ion concentration (pH), total dissolved solids (TDS), electrical conductivity (EC), K+, Na2+, Mg2+, Ca2+, Cl−, SO42−, HCO3−, CO32−, and NO3−, were measured from 45 deep groundwater wells. The hydrochemical facies of the groundwater resources were Ca–Mg–Cl/SO4 and Na–Cl−, which revealed evaporation, reverse ion exchange, and rock–water interaction processes. The IWQI, Na%, SAR, SSP, KI, PS, PI, and RSC showed mean values of 50.78, 43.07, 4.85, 41.78, 0.74, 29.60, 45.65, and −20.44, respectively. For instance, the IWQI for the obtained results indicated that the groundwater samples were categorized into high restriction to moderate restriction for irrigation purposes, which can only be used for plants that are highly salt tolerant. The SVMR model produced robust estimates for eight IWQIs in calibration (Cal.), with R2 values varying between 0.90 and 0.97. Furthermore, in validation (Val.), R2 values between 0.88 and 0.95 were achieved using the SVMR model, which produced reliable estimates for eight IWQIs. These findings support the feasibility of using IWQIs and SVMR models for the evaluation and management of the groundwater of complex terminal aquifers for irrigation. Finally, the combination of IWQIs, SVMR, and GIS was effective and an applicable technique for interpreting and forecasting the irrigation water quality used in both arid and semi-arid regions.

Funder

Large Groups Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3